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Finite-time thermodynamics: Conditions of minimal dissipation for thermodynamic process
with given rate
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The class of thermodynamic processes with given rate and minimal entropy production is considered. The
general conditions they obey are derived. It is shown how the application of those conditions to a number of
particular systems produces a number of known bounds on entropy production~for heat and mass transfer
processes and chemical conversion! as well as previously unknown bounds~for throttling, crystallization, and
mechanical friction!. @S1063-651X~98!04307-4#

PACS number~s!: 05.70.2a, 44.90.1c, 82.60.2s
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I. INTRODUCTION

The world we live in is the world of irreversible pro
cesses. The more intensive the utilization of natural
sources~that is, more powerful machines, high gas and liqu
flow rates, heat and mass transfer rates, etc.!, the higher the
driving forces of the processes and their irreversibiliti
Also, the maximal possibilities of the majority of thermod
namic systems~that is, heat engine efficiency, work due
alignment of the parameters of the subsystems, energy lo
in gas and liquid separation processes, etc.! @1,2# are limited
by the irreversibilities of the processes in them. These p
sibilities reach optima in reversible regimes when duratio
of the processes are as long as possible and their inten
are as low as possible. Finite-time thermodynamics h
been developed to provide in-principle limits of performan
for processes operating within finite intervals or at a nonz
rate. It is reviewed, e.g., in@3#. Within this approach endo
reversible processes are generally considered where the
tem consists of a number of subsystems that are intern
reversible and the production of entropy is caused by
exchange between subsystems. Since in the majority of c
the performance limits correspond to the processes w
minimal dissipation, a number of minimal entropy produ
tion problems in a variety of systems have been analyzed
a number of bounds on the entropy production have b
obtained~in some cases the corresponding pathways w
also obtained! @3–8#. As a rule, each such result was a so
tion of a completely new variational problem requiring si
nificant effort to obtain. In this paper we derive general co
ditions of minimal dissipation that can be applied to a wi
range of thermodynamic systems in a uniform way in or
to obtain conditions of minimal dissipation and correspon
ing bound for a particular system. We demonstrate how
can be done by deriving both already known results~for heat
transfer, mass transfer, and chemical conversion proces!
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and previously unknown results~for throttling and crystalli-
zation processes!.

As a rule the bounds are obtained here not as closed
mulas but in algorithmic form as sets of nonlinear algebr
equations that can be solved easily via routine numer
methods.

These bounds and corresponding pathway conditions
be used to design the thermodynamically most efficient p
cesses, to estimate how close is a current regime to the
modynamic limit, to construct areas in a process state sp
that are thermodynamically feasible, etc.

II. THE CONDITIONS OF MINIMAL DISSIPATION

We consider the processes of minimal dissipation w
given average intensity~or given average values of drivin
forces!. Thus we try to find such a distribution of drivin
forces in time or space in which the irreversibility of th
process is minimal and the averaged values of the driv
forces over this distribution are fixed. The irreversibility
the process is estimated via the entropy production~dissipa-
tion! in the system.

A. Formulation of the problem

The thermodynamic process is characterized by two ty
of variables. The first one is the intensive variable. These
temperature, pressure, concentration, etc. The second ty
the extensive variable. These are volume, internal ene
mole number of a substance in the system, entropy,
When a homogeneous system is divided into two s
systems, their intensive variables stay the same as they
in undivided system. As for extensive variables, they d
crease in proportion to the ratio of the subsystem volume
the initial total volume. Let vectorui denote the intensive
variables and letxi denote the extensive variables for thei th
subsystem. When two subsystems contact with each o
the difference betweenu1 andu2 causes the flowJ(u1 ,u2).
The functionJ for scalar variablesu1 andu2 has the follow-
ing features:
215 © 1998 The American Physical Society
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]J

]u1
.0,

]J

]u2
,0,

~1!

J~u1 ,u2!50, u25u1 .

The argumentl can describe ‘‘time’’ or ‘‘contact sur-
face.’’ In a more general caseJ5(J1 , . . . ,Jj , . . . ,Jm) is a
vector of flows,un5(un1 , . . . ,un j , . . . ,unm) is a vector of
the intensive variables of thenth subsystem (n51,2). The
difference between the vectorsu1 andu2 yields vector of the
driving forcesXj . EachXj depends onu1 j andu2 j only and
satisfies Eq.~1!. The entropy production, which characteriz
the irreversibility of the process, is equal to the average va
of the scalar product of the vectors of flows and drivi
forces@9,10#,

s̄5
1

LE0

L

(
j 51

m

Jj~u1 ,u2!Xj~u1 j ,u2 j !dl. ~2!

We use overbars throughout the paper to denote averag
Since functionsJj andXj obey conditions~1! the summand
of the integrand is positively defined.

Assume that we can change one of the intensive varia
@u2( l ) for definiteness#. Let V be the set of all feasible value
of u2( l ). Then the second variableu1( l ) is determined by the
equation

du1 j

dl
5w j~u1 ,u2!, u1~0!5u10, j 51, . . . ,m. ~3!

For each particular system we will define a particular form
the functionw j (u1 ,u2).

We also assume that the average values of all or of s
of the flow vector components are given,

1

LE0

L

Jj~u1 ,u2!dl5Jj , j 51, . . . ,k1 , k1<m. ~4!

We will try to find the minimal entropy productions̄
subject to these conditions.

B. Scalar case

Let us consider the scalar case first (m51). Here the
problem of minimal entropy production can be written as

s̄5
1

LE0

L

J~u1 ,u2!X~u1 ,u2!dl→min
u2PV

, ~5!

subject to

du1

dl
5w~u1 ,u2!, u1~0!5u10, ~6!

1

LE0

L

J~u1 ,u2!dl5 J̄. ~7!

The valueL may be fixed or be a variable that has to
chosen optimally.

Let us assume that in the optimal processw(u1 ,u2)Þ0. It
allows to substitute the variablel with u1,
e

g.

es

f

e

dl5
du1

w~u1 ,u2!
. ~8!

After this substitution the problem~5!–~7! takes the form

s̄5
1

LEu10

u1~L !J~u1 ,u2!X~u1 ,u2!

w~u1 ,u2!
du1→ min

u2PV, u1~L !

, ~9!

subject to

1

LEu10

u1~L ! J~u1 ,u2!

w~u1 ,u2!
du15 J̄, ~10!

1

LEu10

u1~L ! du1

w~u1 ,u2!
51, ~11!

where we assume thatL is fixed. The control variables in this
problem are the functionu2(u1) and the value ofu1(L). This
problem is much simpler than the initial problem~5!–~7!
since it does not contain differential constraint~6!. The so-
lution u2* (u1) of this problem is not a function ofl but of u1,
which is more useful in many cases.

The Lagrange function for the problem~9!–~11! is written
as

R5
1

w~u1 ,u2!
$J~u1 ,u2!@X~u1 ,u2!1l1#1l2%, ~12!

where l1 and l2 are Lagrange multipliers. The optimalit
conditions of the problem~9!–~11! are the conditions of
function R minimum onu2 for each givenu1,

u2* ~u1 ,l!5arg min
u2PV

R~u1 ,u2 ,l1 ,l2!. ~13!

When the feasible setV is unconstrained, the stationarit
condition of the functionR with respect tou2 has the form

dR

du2
5~X1l1!S w

]J

]u2
2

]w

]u2
JD1wJ

]X

]u2
2l2

]w

]u2
50.

~14!

Conditions~14!, ~10!, ~11! and the condition of minimum of
the Lagrange function’s integral with respect tou1(L),

d

du1~L !S Eu10

u1~L !

R~u1 ,u2 ,l1 ,l2!du1D
5R„u1~L !,u2„u1~L !…,l1 ,l2…50, ~15!

determineu2* (u1),u1(L),l1 ,l2 .
The problem becomes much simpler if the rate ofu1

change is proportional to the flow,

w~u1 ,u2!5C~u1!J~u1 ,u2!. ~16!

In this case the first term in Eq.~14! is equal to zero and this
equation has the following form:

J2~u1 ,u2!5l2S ]J~u1 ,u2!

]u2
Y ]X~u1 ,u2!

]u2
D . ~17!
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The condition~10! in this case is

E
u10

u1~L ! du1

C~u1!
5 J̄L. ~18!

It determinesu1(L) independently from the optimal solutio
u2* (u1).

C. Vector case

In a case of vector parameters the optimality conditio
for problem~2!–~4! in the form of the Pontryagin maximum
principle have the following form@11#:

H5(
j 51

k

@c0Jj~u1 ,u2!Xj~u1 j ,u2 j !1c jw j~u1 ,u2!

1l j Jj~u1 ,u2!#,

dc j

dl
52

]H

]u1 j
, j 51, . . . , k,c j~L !50, ~19!

u2 j* ~ l !5arg max
u2 j PV

H„u1* ~ l !,c~ l !,l…, j 51, . . . ,k, ~20!

wherec0 andl j are Lagrange multipliers andc j ( l ) are ad-
joint variables. In the nonsingular casec0521 andl j50
for j .k1. The analytical solution of the set of Eqs.~19!,
~20!, ~3!, and ~4! is possible in very few cases only. If w
assume that there are only small deviations from the ther
dynamic equilibrium, then the flowsJ depend on the force
X via the Onsager equations

J5AXT. ~21!

Here A is a positively defined matrix of phenomenologic
coefficients. SuperscriptT denotes transposition. The inte
grand of Eq.~2! is a positively definite square form wit
respect to thermodynamic forces. In this case the prob
can be solved much easier. We do it in two steps.

During the first step, we break conditions~3! and find the
minimum of average value of square form,

s̄5
1

LE0

L

~XAXT!dl5~XAXT!→min, ~22!

subject to

(
n51

k

an jXn5Jj , j 51, . . . ,k1 ~k1<k!. ~23!

Here again the overbar denotes averaging overL. The vector
of the driving forcesX is the control variable in this problem
Since the problem~22! and ~23! is a convex problem its
solution is a constantX @12#. Hence the finding of optima
Xn* is reduced to the solution of a simple quadratic progra
ming problem,

X* A~X* !T→min, (
n51

k

an jXn* 5 J̄ j , j 51, . . . ,k1 .
s

o-

m

-

During the second step, we find such values of vec
u2PV that the conditions

Xj~u1 j ,u2 j !5Xj* , j 51, . . . ,k, ~24!

and Eqs.~3! hold. We do that by assuming thatu1 are pa-
rameters and solving the set of Eqs.~24! with respect tou2.
This yields the dependenceu2(u1). After substituting this
function into Eqs.~3! and solving those equations, we obta
u1* ( l ) andu2* „u1* ( l )…5u2* ( l ). If it turns out that these solu
tions are feasible@that is,u2* ( l )PV], then problems~22! and
~23! are equivalent to the initial problem~2!–~4!, and ~21!
and we found the process with minimal dissipation.
u2* ( l )¹V, then the solution of problems~22! and ~23! pro-
vides the bound on the minimal entropy production.

The second case when the problem~2!–~4! becomes sig-
nificantly simpler is when the flows are independent fro
each other. Each flow depends on its own set of variable

Jj5Jj~u1 j ,u2 j !, j 51, . . . ,k.

The same is true for the forcesXj andu1(L), given by

du1 j

dl
5w j~u1 j ,u2 j !, u1 j~0!5u1 j 0 ,

~25!

u1 j~L !5u1 j , j 51, . . . ,k.

Here the problem of minimal dissipation is decomposed i
k scalar problems of the following form:

s̄ j5
1

LE0

L

Jj~u1 j ,u2 j !Xj~u1 j ,u2 j !dl→min, ~26!

subject to differential constraint~25! and

1

LE0

L

w j~u1 j ,u2 j !dl5
u1~L !2u1~0!

L
. ~27!

As it was done in the preceding section, one can write
optimality condition of this problem,

u2 j* 5arg min
u2 j PVj

S 1

w j
~JjXj1l j ! D5arg min

u2 j PVj

Rj~u1 j ,u2 j ,l j !,

~28!

which determines the optimalu2 j* (u1 ,l j ). In a weaker form
of the stationarity ofRj on u2 j it is

~Xj1l j !S w j

]Jj

]u2 j
2

]w j

]u2 j
Jj D1w j Jj

]Xj

]u2 j
50. ~29!

The values ofl j are to be found from the conditions

E
u1 j ~0!

u1 j du1 j

w j„u1 j ,u2 j* ~l j ,u1 j !…
5L, j 51, . . . ,k. ~30!

If only some of theu1 j (L) are fixed @u1 j (L)5ū1 j , j
51, . . . ,k1, k1,k], thenl j andu1 j* for j 5k111, . . . ,k are
to be found jointly from the conditions
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S 1

w j
~JjXj1l j ! D

u1 j 5ū1 j ,u2 j 5u
2* j ~l j ,ū1 j !

50.

These conditions follow from the Pontryagin maximum pr
ciple.

D. The choice ofL

Introduction of the multiplier 1/L into criterion ~2! and
conditions~4! at fixed L does not change the optimal sol
tion if L is finite, but it makes the problem meaningful ifL
tends to infinity. Besides, the valueL itself can be a contro
variable, which should be chosen optimally. In this case
Lagrange functional for the corresponding extremal probl
must be stationary with respect toL. For example, ifL is an
additional control variable in the problem~9!–~11!, then its
Lagrange functional has the form

R̄5
1

LEu10

u1~L !

R~u1 ,u2 ,l!du1 ,

where the functionR is determined by Eq.~12!. The station-
arity condition ofR̄ with respect toL leads to the equation

dR̄

dL
50⇒R„u1~L !,u2~L !,l…5

1

LEu10

u1~L !

R~u1 ,u2 ,l!du1 .

In the general problem~2!–~4!, whereL is an additional
control variable, the condition

(
j 51

k

Jj„u1~L !,u2~L !…@Xj„u1~L !,u2~L !…1l j #

5
1

LE0

L

(
j 51

k

Jj~u1 ,u2!@Xj~u1 ,u2!1l j #dl ~31!

is added to the set of Eqs.~19! and~20!. Condition~31! is the
consequence of the stationarity with respect toL of the inte-
grated functionH where the first and the third terms und
the sum are multiplied by 1/L.

III. MINIMAL DISSIPATION CONDITIONS
FOR SOME THERMODYNAMIC PROCESSES

Let us show how these conditions of minimal dissipati
are applied to particular processes.

A. Heat transfer

Consider a thermodynamic system that consists of
subsystems with the temperaturesT1( l ) andT2( l ) and where
heat is transferred between these subsystems. For exa
this could be the counter-flux heat exchanger. The ther
dynamic forceX in the problem of heat transfer with min
mal dissipation in this system is

X~T1 ,T2!5S 1

T2
2

1

T1
D . ~32!
e

o

ple,
o-

The flowJ is the heat flowq(T1 ,T2). In many cases we can
assume thatw52 @1/c1(T1)#q(T1,T2) and that the condition
~6!, which determines the dependence ofT1 on l , has the
following form:

dT1

dl
52

1

c1~T1!
q~T1 ,T2!, T1~0!5T10, ~33!

wherec1(T1) is the heat capacity of the heat source.
From the general conditions~17!, ~18!, and ~11! of the

minimal dissipation for the given average rate of the h
flow q̄ for the heat transfer process, it follows that

q2~T1 ,T2!52l2

]q

]T2
T2

2 , ~34!

E
T1~L !

T10
c1~T1!dT15q̄L, ~35!

E
T1~L !

T10 c1~T1!dT1

q~T1 ,T2!
5L. ~36!

The first of these conditions yieldsT2* (T1 ,l2), the second
condition determinesT1(L), and the third condition deter
mines the constantl2.

For the linear law of heat exchange

q5a~T12T2! ~37!

with the constant heat capacityc, the condition~34! yields

a2~T12T2!252l2~2a!T2
2⇒aS T1

T2
21D 2

5l2 . ~38!

Thus for anyl the ratioT1 /T2 is constant and equal to

T1

T2
511Al2

a
. ~39!

Because ofT1(L)5T102q̄L/c from Eq. ~36! we have

Al2

a
5

2 ~c/aL ! ln~12 q̄L/cT10!

11 ~c/aL ! ln~12 q̄L/cT10!
. ~40!

The substitution of Eqs.~39! and ~40! into the expression

s5
c

LET1~L !

T10 S 1

T2~T1!
2

1

T1
DdT1

yields the bound on the entropy production in a heat tran
process,

s* 5
c2 ln2~12 q̄L/cT10!

aL1c ln~12 q̄L/cT10!
.

For the following general law of heat exchange,

q~T1 ,T2!5a~T1
n2T2

n!, ~41!

whenn is an integer, the condition~34! takes the form
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a~T1
n2T2

n!25l2nT2
n11 ,

or

q~T1 ,T2!

aT2
n11/2

5S T1
n

T2
n11/2

2T2
n21/2D 5Al2n

a
5const. ~42!

At n.21 then, the higher the temperatureT2 is, the
higher is the heat flow, and ifn,21, the higher the tem-
peratureT2 is, the lower is heat flow. Ifn521, then the
heat flow that corresponds to the minimal dissipation is c
stant and equal toq̄, and the minimal entropy production i

s* 5
q̄2L

a
. ~43!

B. Isothermal mass transfer

Assume that the system consists of two subsystems
the same temperatureT( l ) for all l P@0,L# and concentra-
tions of the key component in the first subsystemC1( l ) and
in the second oneC2( l ). This key component is being trans
ferred from the first subsystem into the second.Ci , i 51,2,
are intensive variables of the problem. Both mass flowg and
chemical potentialsm i , i 51,2, depend on these concentr
tions and

J~u1 ,u2!→g~C1 ,C2!,
~44!

X~u1 ,u2!→
1

T
@m1~C1 ,T!2m2~C2 ,T!#.

It is assumed that the diffusion process does not change
pressure in the system. The initial concentration of the
component in the first subsystem is given. The average m
transfer rateḡ is also given,

1

LE0

L

g~C1 ,C2!dl5ḡ. ~45!

The entropy production due to diffusion is to be minimize

s̄5
1

LE0

Lg~C1 ,C2!

T
@m1~C1 ,T!2m2~C2 ,T!#dl→min.

~46!

In order to apply the general condition of minimal entro
production, one has to derive the differential equation~6!
and functionw(u1 ,u2)5w(C1 ,C2). Since the flow of only
the key component occurs, its concentration in the first s
system and total quantity of substances inG1 change accord-
ing to the equation

d~G1C1!

dl
5

dG1

dl
52g~C1 ,C2!. ~47!

From condition~47! it follows that

dC1

dl
52

12C1

G1
g~C1 ,C2!, C1~0!5C10 ~48!
-

th

he
y
ss

:

b-

and

dG1

dC1
5

G1

12C1
.

Hence

G1~C1!5
G1~0!~12C10!

12C1
5

G̃

12C1
,

whereG̃ is the amount of inert component in the first su
system. Substitution ofG1(C1) into Eq. ~48! yields

dC1

dl
52

1

G̃
~12C1!2g~C1 ,C2!, C1~0!5C10. ~49!

Since the problem~46!, ~45!, and ~49! has the canonica
form ~5!–~7!, its optimality conditions can be obtained b
substituting Eqs.~17! and ~18!,

]T

]C2
S ]m1

]T
2

]m2

]T
2

m12m2

T D2
]m2

]C2

5l2S ]g

]C2
D T

g2~C1 ,C2!
, ; l P@0,L !, ~50!

C1~L !5
C10G102ḡL

G102ḡL
. ~51!

For chemical potentials

m i5m0~P,T!1RT ln Ci , i 51,2, ~52!

we get ]m2 /]C2 5 RT/C2, and conditions~50! have the
form

2
R

C2
5l2S ]g

]C2
D 1

g2
. ~53!

The constantl2 is to be found from the condition

E
C1~L !

C10 G̃

T~C1 ,C2!~12C1!2
dC15L ~54!

after substitution ofC2* (C1 ,l2) in it. Backward substitution
of the optimall2* into C2* (C1 ,l2) and into Eq.~49! gives
optimalC1* ( l ) andC2* ( l ). Their substitution into the expres
sion for s gives the bound on the entropy productions* in
the isothermal mass transfer process. If such a path ca
found that the conditions~50! and ~51! hold on it, then this
bound will be realized.

If the diffusion flow is proportional to the chemical po
tential difference

g5a@m1~C1!2m2~C2!#

and the temperatureT is constant, then the solution is esp
cially simple.

In this case from Eq.~50! it follows that
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g* 5const5ḡ,

dG

dl
5

ḡ~12C1!

G102ḡl
⇒C1~ l !512~12C10!

G10

G102ḡl
.

Let chemical potentials be in form~52!. Then from the flow
constancy condition it follows that the ratio

C1

C2
5expS ḡ

2T
D

is constant. The bound on entropy production here is

s̄* 5g2/aT.

Other laws of mass transfer are considered in@8#.

C. Throttling

Let us consider gas transfer through a throttle.P1 andP2
denote pressure before and after the throttle.l denotes time.
The flow rate of expansion is denoted asg(P1 ,P2). Suppose
that the process is isothermal, i.e., the temperature does
change. The entropy production is

s5g~P1 ,P2!
m1~P1 ,T!2m2~P2 ,T!

T
. ~55!

For the ideal gas this expression takes the form

s5g~P1 ,P2!ln P1 /P2 . ~56!

It is assumed that the duration of the processL and the
average amount of gas transferred through the throttle du
this timeḡ are fixed. It is also assumed that the volume fro
V from which gas is removed and the total amount of gas
the system are fixed. It is required to minimize the dissi
tion

s̄5
1

LE0

L

g~P1 ,P2!
m1~P1 ,T!2m2~P2 ,T!

T
dl→min

~57!

subject to

1

LE0

L

g~P1 ,P2!dl5ḡ, ~58!

dP1

dl
52

RTg~P1 ,P2!

V
, P1~0!5P10. ~59!

Equation~59! determines the rate of pressure change w
gas passes through the throttle.

The problem~57!–~59! has a canonical form~5!–~7! and
~16!. Equations~17! and ~18! give the following optimality
conditions for it:

Tg2~P1 ,P2!52l2S ]g

]P2
Y ]m2

]P2
D , ~60!
ot

g

n
-

n

P1~L !5P102
RT

V
ḡL. ~61!

If it is assumed that the gas is ideal and

g~P1 ,P2!5a~P12P2!1/2

then the condition~60! leads to the following expression:

~P12P2!3/P2
25const5h, ; l P@0,L#. ~62!

In order to find the optimal dependence ofP2* ( l ) and the

minimal entropy productions̄* one has to substitute th
condition ~62! into Eqs.~58! and ~59!. The optimal depen-
dence of pressure is defined after Eqs.~59! and ~62! are
solved up to the constanth,

P2* ~ l ,h!5HA4

3
h2/32

2

3
h1/6FaRT

V
l 2 f ~P20,h!G

2
2

3
h1/3J 3

, ~63!

where

f ~P20,h!5
3

2
h21/6P20

2/312h1/6P20
1/3. ~64!

The valueP20 is to be found from Eq.~62! as the solution
of the equation

P201h1/3P20
2/35P10. ~65!

The condition of the fixed duration of the process gives
equation that determines optimalh,

1

2
@p20

2/32p2~L !2/3#1
2h

3
@p20

1/32p2~L !1/3#5
LRTah1/2

3V
.

~66!

The minimal entropy production is given by the followin
formula:

s̄* 5
V

RTL
$P10~ ln P1021!2P1~L !@ ln P1~L !21#

2r ~P20!2r „P2~L !…%.

Here the functionr (P2) is defined as

r ~P2!5P2~ ln P221!1h1/3P2
2/3~ ln P223/2!.

The derived formulas give the bound on the minimal d
sipation in the throttling process in algorithmic form. If th
condition ~62! does not hold in a throttling process, then
entropy production is higher than the entropy production
the process determined by Eqs.~63!–~66!.

D. Crystallization

During crystallization process, the key component crys
lizes out of solution onto the surface of the crystals alrea
present, where its concentration is higher than the equ
rium concentration in the solution. The initial dimensio
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~masses! of the crystals are disperse. At any instant, the
of crystals can be described by a distribution of their mas
We denote the concentration of the crystallizing substanc
the liquid asC1 and its equilibrium concentration under th
given pressureP and temperatureT asC2. The flux of mass
is denoted asg(C1 ,C2) and l denotes time. The entrop
production in a crystallization process as in any mass tran
process is expressed by the following formula:

s5g~C1 ,C2!
m1~C1!2m2~C2!

T
. ~67!

The chemical potentials are

m15m0~T,P!1RT ln C1

and

m25m0~T,P!1RT ln C2 ,

so that

s5g~C1 ,C2!R ln
C1

C2
. ~68!

First, we consider this process for a single crystal. T
flow g depends on the net surface of the crystalF, which, in
turn, depends on the mass of the crystalM . The net mass of
the crystal changes according to the equation

dM

dl
5aF~C12C2!, M ~0!5M0 , M ~L !5M̄ .

For the crystal with the massM , the net surface is propor
tional to the 2/3 power of its mass. Hence,

dM

dl
5KM2/3~C12C2!. ~69!

The ratioK depends on the mass transfer ratio and the cry
shape and can be determined experimentally. We ass
here that there is no nucleation and recrystallization.

The problem of minimal dissipation in crystallization pr
cess takes the form

s̄5
1

LE0

L

KM2/3~C12C2!R ln
C1

C2
dl→min

C1

~70!

subject to constraint

E
0

L

KM2/3~C12C2!dl5~M̄2M0!. ~71!

The optimality condition for this problem,

M2/3~C12C2!2

C1
5

l2

KR
5const5h, ; l P@0,L !, ~72!

follows from the general conditions~17! and ~18!. Condi-
tions ~72! and Eq. ~69! give the differential equation tha
determinesC* (t) up to the constanth. In order to do that,
we replaceṀ andM by Ċ1 andC1:
t
s.
in

er

e

al
me

Ċ1* 52Ah̃
AC1* ~C1* 2C2!3

C1* 1C2

, C1~0!5C10. ~73!

The constanth is to be found from Eq.~71! andc10 is de-
termined byM0 @Eq. ~72!#. Their backward substitution into
the expression fors gives the bound on the entropy produ
tion in crystallization processs* .

If we do not assume that all crystals are the same, then
net surfaceF( in the expression of the entropy productio
s( should be the result of averaging ofFi(Mi) over all Mi .
SinceFi(Mi) is convex, theF( is less than the value of th
net surface calculated by assuming that the masses of al
crystals are the same and equal the average crystal ma
t50. Since entropy production depends monotonically
the mass transfer coefficient, it increases if the surface of
crystal increases. Therefore the use of the dependenceF̄(

5KM2/3 and the corresponding bound determined by E
~71!–~73! give a lower bound on the entropy production
crystallization process.

E. Mechanical friction

Let us consider a system that consists of two subsyst
separated by a piston. The pressures in these subsystem
denoted asP1 and P2 correspondingly. The temperature o
the systemT is constant during the process. The press
difference causes the piston to move. The rate of the v
ume’s change for each of the subsystems due to this pres
difference is denoted asy(P1 ,P2). Since in most cases thi
velocity depends only on the differenceP12P2, the rate of
the entropy production may be written as

s~DP!5s~P12P2!5
y~P12P2!

T
~P12P2!→min.

~74!

This value can be minimized if the average velocity valueȳ
is given,

1

LE0

L

y@P1~ l !2P2~ l !#dl5 ȳ. ~75!

WhenDP5P12P2 is written asDP(y), the problem of
finding the regime of minimal dissipation takes the form

1

T
s̄~y!5

1

T

1

LE0

L

yDP~y!dl→min, ȳ5y0 . ~76!

This is a standard averaged problem of nonlinear progr
ming. From the general theory of this problem@12#, it fol-
lows that if s(y) is concave, then the optimal velocity mu
be constant and equal toȳ. Otherwise the solution of the
averaged problem of nonlinear programming Eq.~76! corre-
sponds to the ordinate of the convex hull of the functi
s(y) at the pointy5 ȳ. The velocity takes no more than tw
valuesy1 andy2. These values are defined by the followin
conditions:

R~l* ,y i !5max
l

min
y

@s~y!1l~y2 ȳ !#. ~77!
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The functionR has the same value at pointsy i ( i 51,2). The
fraction g of the intervalL during whichy* ( l )5y1 is to be
found from the condition

gy11y2~12g!5 ȳ, 1>g>0.

The bound is reached in every process wherev5v1 during
g1 fraction of the intervalL andv5v2 all the other time.

F. Chemical conversion

Consider an isothermal chemical reactor of ideal mix
with periodic action. In this reactor the following reaction
takes place:

a1B11a2B2 

k2

k1

a3B3 ,

where Bi are the initial and final components anda i are
stoichiometric coefficients. We assume thata1,0, a2,0,
anda3.0. The reaction velocity is determined by the law
active masses

W~X!5k1X1
2a1X2

2a22k2X3
a35W12W2 . ~78!

Here Xi5Ni( l )/NS( l ) is the mole concentration of thei th
component,Ni( l ) is the number of moles of thei th compo-
nent in the system, andNS( l )5( iNi( l ).

The entropy production

s52
W

T
A, ~79!

where A52( i 51
3 a im i is the affinity of chemical reaction

For the ideal solutions

m i5m i
0~T,P!1RT ln Xi .

Hence

A52(
i 51

3

a im i
0~T,P!2RT(

i 51

3

a i ln Xi .

According to@13# the first term in this expression is equal

2(
i 51

3

a im i
05RT ln ke~T,P!.

The equilibrium constantke is the ratio of velocities of direc
and reverse reactions,

ke~T,P!5
k1~T,P!

k2~T,P!
.

So we have

A5RTS ln
k1

k2
2(

i
ln Xi

a i D
or
A5RT ln
k1X1

2a1X2
2a2

k2X3
a3

5RT ln
W1

W2
.

Let the average velocity of reaction

1

LE0

L

W~X!dl5W̄ ~80!

be given. The reaction velocityW(t) is a control. This ve-
locity determines how the conversion degree changes,

dj

dl
5W, ~81!

and how the amount of moles changes,

dNi

dl
5a iW, i 51,2,3.

Thus, we have

N3~ l !5N301a3j~ l !,

and the total number of moles can be calculated as

NS~ l !5NS01j~ l !(
i 51

3

a i .

The velocity of the reverse reaction has the form

W25k2

N3~ l !

( iNi~ l !
5k2

N301a3j~ l !

NS01j~ l !( ia i
.

Finally, we reduce the problem of minimizing the diss
pation in the system to the following form:

s̄5
1

LE0

L

RW ln
W1W2~j!

W2~j!
dl→min

W
, ~82!

subject to the constraints

1

LE0

L

W~ t !dl5W̄ ~83!

and

dj

dl
5W, j~0!50, ~84!

where

W2~j!5k2

N301a3j

NS01j( ia i
. ~85!

Since this problem has a canonical form~4!–~7!, its optimal-
ity condition is

W2

W1W2~j!
5

lL

R
5const, ; l P@0,L !, ~86!



s
p

ro
th
tie
ab

e

is-
We
sys-

ing
een

S

PRE 58 223FINITE-TIME THERMODYNAMICS: CONDITIONS OF . . .
and Eqs.~81! and ~83! allow us to find the optimal value
W* ( l ), j* ( l ), and the corresponding bound on the entro
production.

IV. CONCLUSION

We examined the class of the minimal dissipation p
cesses, which is as important physically as a class of
reversible processes. It reduces the limits of our potentiali
such that in some cases these limits turn out to be realiz
and may be widened only by extra embedding~contact sur-
face increasing! or by reducing the process intensity. W
-
ri

l

y

-
e
s
le

derive the general conditions that hold for any minimal d
sipation process as well as the corresponding bounds.
demonstrate how these results can be used for particular
tems. The new optimality conditions and correspond
bounds for throttling and crystallization processes have b
obtained.
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